Notes on finite group theory

نویسنده

  • Peter J. Cameron
چکیده

2 Preface Group theory is a central part of modern mathematics. Its origins lie in geometry (where groups describe in a very detailed way the symmetries of geometric objects) and in the theory of polynomial equations (developed by Galois, who showed how to associate a finite group with any polynomial equation in such a way that the structure of the group encodes information about the process of solving the equation). These notes are based on a Masters course I gave at Queen Mary, University of London. Of the two lecturers who preceded me, one had concentrated on finite soluble groups, the other on finite simple groups; I have tried to steer a middle course, while keeping finite groups as the focus. The notes do not in any sense form a textbook, even on finite group theory. Finite group theory has been enormously changed in the last few decades by the immense Classification of Finite Simple Groups. The most important structure theorem for finite groups is the Jordan–Hölder Theorem, which shows that any finite group is built up from finite simple groups. If the finite simple groups are the building blocks of finite group theory, then extension theory is the mortar that holds them together, so I have covered both of these topics in some detail: examples of simple groups are given (alternating groups and projective special linear groups), and extension theory (via factor sets) is developed for extensions of abelian groups. In a Masters course, it is not possible to assume that all the students have reached any given level of proficiency at group theory. So the first chapter of these notes, " Preliminaries " , takes up nearly half the total. This starts from the definition of a group and includes subgroups and homomorphisms, examples of groups, group actions, Sylow's theorem, and composition series. This material is mostly without proof, but I have included proofs of some of the most important results, including the theorems of Sylow and Jordan–Hölder and the Fundamental Theorem of Finite Abelian Groups. The fourth chapter gives some basic information about nilpotent and soluble groups. Much more could be said here; indeed, it could be argued that a goal of finite group theory is to understand general finite groups as well as we now understand finite soluble groups. The final chapter contains solutions to some of the exercises. I am grateful to students and colleagues …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contractors for flows

We answer a question raised by Lovász and B. Szegedy [Contractors and connectors in graph algebras, J. Graph Theory 60:1 (2009)] asking for a contractor for the graph parameter counting the number of B-flows of a graph, where B is a subset of a finite Abelian group closed under inverses. We prove our main result using the duality between flows and tensions and finite Fourier analysis.

متن کامل

Group Theory

The first version of these notes was written for a first-year graduate algebra course. As in most such courses, the notes concentrated on abstract groups and, in particular, on finite groups. However, it is not as abstract groups that most mathematicians encounter groups, but rather as algebraic groups, topological groups, or Lie groups, and it is not just the groups themselves that are of inte...

متن کامل

MATH 436 Notes: Sylow Theory

We are now ready to apply the theory of group actions we studied in the last section to study the general structure of finite groups. A key role is played by the p-subgroups of a group. We will see that the Sylow theory will give us a way to study a group “a prime at a time”. First we record a very important special case of group actions: Theorem 1.1 (p-group Actions). Let p be a prime. If P is...

متن کامل

Notes on the model theory of finite and pseudo-finite fields

These notes contain the material covered during a mini-course given at the University of Helsinki, 22 29 April 2009. The reader wishing to see more on pseudo-finite fields can also consult the notes on the course given in Madrid (November 2005), posted on my web page. The main part of this course is based on a paper by James Ax [A], The elementary theory of finite fields. The interested reader ...

متن کامل

Pcmi Lecture Notes on Property (t ), Expander Graphs and Approximate Groups (preliminary Version)

The final aim of these lectures will be to prove spectral gaps for finite groups and to turn certain Cayley graphs into expander graphs. However in order to do so it is useful to have some understanding of the analogous spectral notions of amenability and Kazhdan property (T ) which are important for infinite groups. In fact one important aspect of asymptotic group theory (the part of group the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013